Part A: Understanding Ksp Conceptually

True or False

The solubility product constant for the salt CoS is: $[Co^{2+}]^2[S^{2-}]$

_____ CuS (K_{sp} = 8 x 10^{-37}) is more soluble than MnS (K_{sp} = 7 x 10^{-16})

- _____K_{sp}, is the equilibrium constant for a solid substance dissolving in an aqueous solution.
- _____ The more soluble the substance, the smaller the solubility product constant (K_{sp}).
- _____ We cannot compare the solubility constants of two compounds when the ratio of ions is not the

same. (e.g. FeCO₃ (K_{sp} = 3.1×10^{-11}) to Fe(OH)₂ (K_{sp} = 4.9×10^{-17}).

- _____ The solubility of a salt in the presence of a common ion has a lower solubility.
- _____ The solubility of an ionic compound with a basic anion increases in acid.

Part B: Ksp and Molar solubility

- 1) The K_{sp} of lead(II) sulfate is 1.6 x 10⁻⁸.
 - a) Write the expression of the solubility product constant (K_{sp}) for lead sulfate.
 - b) What is the molar solubility of lead(II) sulfate in pure water?

c) Would you expect the molar solubility of lead(II) sulfate to be lower or higher in a solution that has $[SO_4^{2-}] = 0.25$ M. Calculate the solubility and compare.

Part C: The solubility of salts in acidic and basic solutions

- 2) The K_{sp} of lead(II) hydroxide is 4.2 x 10⁻¹⁵.
 - a) Write the expression of the solubility product constant (K_{sp}) for lead hydroxide.
 - b) What is the molar solubility of lead(II) hydroxide in pure water?

- c) Would you expect the solubility to be higher or lower in an acidic solution? How about a basic solution?
- d) What is the solubility of lead(II) hydroxide in a pH = 4.00 buffer? (hint: although we are referring to an acid solution, remember that OH⁻ and H_3O^+ are related to each other (i.e.[OH⁻][H₃O⁺] = K_w and pH+pOH = 14) so approach this problem by calculating pOH and [OH⁻] and use [OH⁻] in ICE table.)

e) What is the solubility of lead hydroxide in a pH = 11.00 buffer?

Part D: Comparing the solubility of salts

3) Based on the K_{sp} values provided below for six lead salts. Can you predict which is most soluble and which is least? Would you have to calculate the solubility of each?

Salt	Ksp
Pb(OH) ₂	4.2 x 10 ⁻¹⁵
PbF ₂	4.0 x 10 ⁻⁸
Pbl ₂	1.4 x 10 ⁻⁸
PbC ₂ O ₄	3.0 x 10 ⁻¹¹
PbSO ₄	1.6 x 10 ⁻⁸
PbCrO ₄	1.7 x 10 ⁻¹⁴